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Abstract
We present a new approach to the construction of the Darboux matrix. This
is a generalization of a recently formulated method based on the assumption
that the square of the Darboux matrix vanishes for some values of the spectral
parameter. We consider the multisoliton case, the reduction problem and the
discrete case. The relationships between our approach, the Zakharov–Shabat
dressing method and the Neugebauer–Meinel method are discussed in detail.

PACS numbers: 02.40.Hw, 02.30.Jr, 02.20.Sw.

1. Introduction

There are several methods to construct the Darboux matrix (which generates soliton solutions)
[1–8]. However, these methods are technically difficult when applied to the matrix versions of
the spectral problems which are naturally represented in Clifford algebras [9, 10, 12]. Some of
these problems are avoided in our recent paper [13]. In the present paper we develop the ideas
of [13] in the matrix case. We extend our approach to the multisoliton case and consider the
reduction problem and the discrete case. We also show that our approach, although different,
is to some extent equivalent to the standard dressing method. We compare our method with
the Zakharov–Shabat approach [1, 14] and the Neugebauer–Meinel approach [3, 15].

We consider the spectral problem

�,µ = Uµ� (µ = 1, . . . , m) (1)

where Uµ depend on x1, . . . , xm, λ. We make no assumptions on Uµ except a given rational
dependence on λ (i.e. the poles of Uµ are prescribed). The Darboux transformation is defined
as the gauge-like transformation

�̃ = D�, (2)
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leading to a new solution of the spectral problem (1)

�̃,µ = Ũµ�̃, (3)

which means that Ũµ and Uµ should have the same rational dependence on λ. The compatibility
conditions for system (1) yield a system of nonlinear equations for the coefficients of Uµ. The
Darboux transformation automatically generates new solutions to this nonlinear system. In
the simplest case (D linear in λ or D with a single pole in λ) the Darboux transformation
usually adds a soliton on a given background.

In this paper, we assume that Uµ and � are n × n matrices but our approach also works
well in the Clifford numbers case [13].

The construction of the Darboux transformation is well known (especially in the matrix
case) [7, 14]. The first step is the equation for D resulting from (1), (2) and (3):

D,µ + DUµ = ŨµD. (4)

In our earlier paper [13] we proposed the following procedure. We assume that there exist
two different values of λ, say λ+ and λ−, satisfying

D2(λ±) = 0. (5)

Denoting �(λ±) = �±,D(λ±) = D±, evaluating (4) at λ = λ± and multiplying (4) by D±
from the right, we get

D±,µ D± + D±Uµ(λ±)D± = 0. (6)

We assume that �(λ±) are invertible (which is true in the generic case). It is not difficult to
check that D± given by

D± = ϕ±�±d±�−1
± , d2

± = 0, (7)

(where d± = const and ϕ± are scalar functions) satisfy equations (5), (6). Assuming that D is
linear in λ, i.e.

D(λ) = A0 + A1λ, (8)

we can easily express A0, A1 by D± to get

D(λ) = λ − λ−
λ+ − λ−

ϕ+�+d+�
−1
+ +

λ − λ+

λ− − λ+
ϕ−�−d−�−1

− . (9)

2. One-soliton case and the Zakharov–Shabat approach

We confine ourselves to the case linear in λ (see (8)). Condition (5) can be easily realized if

D2(λ) = σ(λ − λ+)(λ − λ−)I, (10)

where σ �= 0 is a constant, λ+ �= λ− and I is the identity matrix. The identity matrix will
sometimes be omitted (i.e. for a ∈ C we write aI = a). In case (10) from (5) and (9) it
follows that

D+D− + D−D+ = −σ(λ+ − λ−)2. (11)

Lemma 1. D of the form (8) satisfies (10) if and only if n is even and

D = N (λ − λ+ + (λ+ − λ−)P ) , (12)
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where the matrices N and P satisfy

P 2 = P, N 2 = σ, NPN−1 = I − P. (13)

In this case the Darboux matrices (9) and (12) are equivalent.

Proof. We assume (8) and identify N ≡ A1. Then

D2(λ) = A2
0 + (A0N + NA0)λ + N 2λ2,

i.e. D2(λ) is a quadratic polynomial. It is proportional to the identity matrix I (compare (10))
iff

N 2 = σ, A0N + NA0 = −σ(λ+ + λ−), A2
0 = σλ+λ−. (14)

Multiplying the second equation by NA0 we get

σ 2λ+λ− + (NA0)
2 + σ(λ+ + λ−)NA0 = 0.

Hence (NA0 + σλ+)(NA0 + σλ−) = 0, and, denoting Q := NA0 + σλ+, we have

Q2 = (λ+ − λ−)σQ

which means that Q = (λ+ − λ−)σP , where P 2 = P . Therefore, taking into account
N 2 = σ , we get (12). Now, we take into account the third equation of (14). First,
A2

0P = σλ+λ−P yields λ−(λ+ − λ−)NPNP = 0. Then the equation A2
0 = σλ+λ− is

equivalent to λ+(λ+ − λ−)(σ (I − P) − NPN ) = 0. Therefore NPN−1 = I − P . This
equality means that ker P = N−1 im P , which implies dim ker P = dim im P . Thus, n is
even which completes the proof. �

The case λ+ = λ− can be treated in a similar way and it leads to the nilpotent case [7]:

D = N (λ − λ+ + M), M2 = 0, N 2 = σ, M = −NMN−1.

Our method is closely related to the standard dressing transformation [1, 7, 14]. The
Darboux matrix (12) can be rewritten as

D = (λ − λ+)N
(

I +
λ+ − λ−
λ − λ+

P

)
. (15)

We recognize the standard one-soliton Darboux matrix in the Zakharov–Shabat form [7, 14].
We point out that usually one considers the Darboux matrix D = (λ − λ+)

−1D, which is
equivalent to D given by (12) because the multiplication of D by a constant factor leaves
equation (4) invariant [16]. N is known as the normalization matrix and P is a projector
expressed by the background wavefunction:

ker P = �(λ+)Vker, im P = �(λ−)Vim, (16)

where Vker and Vim are some constant vector spaces, λ+ and λ− are constant complex
parameters. The last constraint of (13) has the following interpretation. Let NPN−1 = I −P .
Then

v ∈ im P ⇔ (I − P)v = 0 ⇔ PN−1v = 0 ⇔ N−1v ∈ ker P

v ∈ ker P ⇔ Pv = 0 ⇔ PN−1v = N−1v ⇔ N−1v ∈ im P.

Hence, dim im P = dim ker P = d ≡ n/2, which implies dim Vim = dim Vker. In this case,
given a projector P, one can always find a corresponding N . Indeed, let v1, . . . , vd be a basis
in im P and wk := N−1vk (k = 1, . . . , d) an associated basis in ker P . By virue of N 2 = σ

we have N−1wk = σ−1vk . Therefore

N−1(v1, . . . , vd, w1, . . . , wd) = (w1, . . . , wd, v1/σ, . . . , vd/σ )
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(where (v1, v2, . . .) denotes the matrix with columns v1, v2, . . .) and, finally,

N = (v1, . . . , vd, w1, . . . , wd)(w1, . . . , wd, v1/σ, . . . , vd/σ )−1. (17)

The N obtained in this way depends on the choice of the bases v1, . . . , vd and w1, . . . , wd

(we can put Avk, det A �= 0, in the place of vk and Bwj , det B �= 0, in the place of wj ). In
other words, N is given up to non-degenerate d × d matrices A and B.

Formulae (9) and (12) coincide after appropriate identification of the parameters. Indeed,
comparing coefficients by powers of λ we have

N = ϕ+�+d+�
−1
+ − ϕ−�−d−�−1

−
λ+ − λ−

,

N (−λ+ + (λ+ − λ−)P ) = λ+ϕ−�−d−�−1
− − λ−ϕ+�+d+�

−1
+

λ+ − λ−
,

(18)

and after straightforward computation we get

P = (
ϕ+�+d+�

−1
+ − ϕ−�−d−�−1

−
)−1

ϕ+�+d+�
−1
+ ,

I − P = (
ϕ−�−d−�−1

− − ϕ+�+d+�
−1
+

)−1
ϕ−�−d−�−1

− .
(19)

Taking into account assumption (11) we have

P = D−D+

D+D− + D−D+
= −D−D+

σ(λ+ − λ−)2
. (20)

The above results are valid for n × n matrix linear problems. Now, we focus on the 2 × 2
case. Because the elements d+, d− are nilpotent

(
d2

± = 0
)
, then there exist vectors v+, v− such

that

d+v+ = 0, d−v− = 0. (21)

Then from (19) it follows immediately that P�+v+ = 0 and (I − P)�−v− = 0, i.e. �+v+

span ker P and �−v− span im P . Hence, v+ ∈ Vker and v− ∈ Vim.
It is not difficult to check that the general form of 2 × 2 matrices d± such that d2

± = 0 is
given by

d± =
(

−a±b± b2
±

−a2
± a±b±

)
=

(
b±
a±

) (−a± b±
)
, (22)

where a±, b± are complex numbers. Therefore, to satisfy (21), we can take

v+ =
(

b+

a+

)
, v− =

(
b−
a−

)
. (23)

We have almost unique correspondence (i.e. up to a scalar factor) between v+ and d+ and
between v− and d−.

Denoting

�+v+ ≡
(

B+

A+

)
, �−v− ≡

(
B−
A−

)
,

we get the explicit formula for P

P =
(

0 B−
0 A−

)(
B+ B−
A+ A−

)−1

=
(−A+B− B+B−−A+A− B+A−

)
A−B+ − A+B−

. (24)

The corresponding N reads (compare (17))

N = 1

A−B+ − A+B−

(
σA−B− − A+B+ B2

+ − σB2
−

σA2
− − A2

+ A+B+ − σA−B−

)
. (25)
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Although we can reduce our approach to the explicit formulae (24) and (25) the main advantage
of our method consists in expressing the Darboux transformation in terms of �±d±�−1

±
and avoiding difficulties with parameterizing kernel and image of the projector P which is
especially troublesome in the Clifford algebras case.

3. Reductions

Let us consider the unitary reduction

U †
µ(λ̄) = −Uµ(λ). (26)

If Uµ is a polynom in λ, then condition (26) means that the coefficients of this polynom by
powers of λ are u(n)-valued.

One can easily prove that (26) implies �†(λ̄)�(λ) = C(λ), where C(λ) is a constant
matrix (C,ν = 0). The matrix C can be fixed by a choice of the initial conditions. Usually we
confine ourselves to the case

�†(λ̄)�(λ) = k(λ)I, (27)

where k(λ) is analytic in λ. From (27) we can derive k(λ̄) = k(λ). By virtue of (2), the
Darboux matrix has to satisfy the analogical constraint:

D†(λ̄)D(λ) = p(λ)I. (28)

Assuming that D is a polynom with respect to λ, compare (8), we get that p(λ) is a polynom
with constant real coefficients, i.e. p(λ̄) = p(λ) and p,ν = 0.

Lemma 2. If D is linear in λ and (28) holds, then roots of the equation det D(λ) = 0 satisfy
the quadratic equation p(λ) = 0.

Proof. Let p(λ) = αλ2 + βλ + γ . From (8), (28) it follows that

A
†
0A0 = γ, A

†
1A1 = α, A

†
0A1 + A

†
1A0 = β, (29)

which can be easily reduced to a single equation for S := −A0A
−1
1 . Namely,

αS2 + βS + γ = 0. (30)

Therefore, the eigenvalues of S have to satisfy the equation p(λ) = 0. Indeed, if S�v = µ�v,
then (αµ2 + βµ + γ )�v = 0. On the other hand, the equation det D(λ) = 0 can be rewritten as

0 = det(λI − S) det A1, (31)

which means that the roots of det D(λ) = 0 coincide with eigenvalues of S. �

Lemma 3. We assume (10). Then reduction (27) imposes the following constraints on the
Darboux matrix (9):

λ− = λ̄+, d
†
−d+ = 0, (32)

and (for n = 2) 〈v+ | v−〉 = 0.

In particular, by virtue of (5), we can take d− = f d
†
+, where f is a scalar function.

Proof. Let us denote zeros of the polynom p(λ) by λ1, λ2. Because p(λ̄) = p(λ) there are
two possibilities: either λ2 = λ̄1 or λ1, λ2 are real. From (10) we have

(det D(λ))2 = σn(λ − λ+)
n(λ − λ−)n. (33)

Therefore, in case (10), lemma 2 means that λ+, λ− coincide with λ1, λ2.
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Suppose that λ+ ∈ R. Then from (28) we have (D(λ+))
†D(λ+) = 0, which implies

D+ ≡ D(λ+) = 0 (because for any vector v ∈ Cn the scalar product
〈
v

∣∣D†
+D+v

〉 = 0, hence
〈D+v | D+v〉 = 0, and, finally D+v = 0). Therefore λ+ (and, similarly, λ−) cannot be real.
Thus λ− = λ̄+. In this case (28) reads

(D(λ−))†D(λ+) = 0. (34)

Using (7) and (27) (assuming k(λ±) �= 0) we get

(D(λ−))† = ϕ̄−(�
†
−)−1d

†
−�

†
− = ϕ̄−�+d

†
−�−1

+

and (34) assumes the form ϕ+ϕ̄−�+d
†
−d+�

−1
+ = 0. Hence d

†
−d+ = 0.

Finally, in the case n = 2, we use (22). Then the condition d
†
−d+ = 0 is equivalent to

a+ā− + b+b̄− = 0, i.e. 〈v+ | v−〉 = 0. �

Another very popular reduction is given by

Uµ(−λ) = JUµ(λ)J−1, J 2 = c0I. (35)

Then one can prove that �(−λ) = J�(λ)C(λ), and we choose such initial conditions that
C(λ) = J−1, i.e.

�(−λ) = J�(λ)J−1, D(−λ) = JD(λ)J−1. (36)

Such choice of C(λ) is motivated by a natural requirement that �, �̃,D are elements of the
same loop group (by the way, formula (27) has the same motivation).

Lemma 4. We assume (10). Then reduction (36) imposes the following constraints on the
Darboux matrix (9):

λ− = −λ+, ϕ+ = ϕ−, d+ = J−1d−J, (37)

and (for n = 2) v− = Jv+.

Proof. From (36) it follows that det D(λ) = det D(−λ), which means that the set of roots
of the equation det D(λ) = 0 is invariant under the transformation λ → −λ. Therefore
λ− = −λ+. Then, using once more (36) we get D− = JD+J

−1 and �− = J�+J
−1. Hence

ϕ+d+ = ϕ−J−1d−J . Thus ϕ+ = c0ϕ−, where c0 is a constant. Without loss of generality we
can take c0 = 1 (redefining d± if necessary). In the case n = 2 the kernels of d± are one
dimensional. Therefore 0 = d+v+ = J−1d−Jv+ implies v− = c1Jv+, where c1 = const. We
can take v+ = Jv−. �

Other types of reductions (compare [2, 7]) can be treated in a similar way.

4. The multi-soliton Darboux matrix

In this section, we generalize the approach of [13]. First, we relax assumption (5). Second,
we consider the N-soliton case (the Darboux matrix is a polynom of order N):

D(λ) = A0 + A1λ + · · · + ANλN. (38)

Condition (5) will be replaced by

D(λk)Tk = 0, (39)

where Tk �= 0 are some matrices (for instance we can consider them as values of a
matrix function T (λ), i.e. Tk ≡ T (λk), compare the end of this section). Elementary
algebraic considerations show that the existence of a matrix Tk satisfying (39) is equivalent to
det D(λk) = 0.
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Evaluating (4) at λ = λk , denoting Dk ≡ D(λk),�k ≡ �(λk) and Ukµ ≡ Uµ(λk),
multiplying the resulting equation by Tk from the right and assuming that Ũkµ is finite, we get

Dk,µ Tk + DkUkµTk = 0. (40)

If Dk, Tk satisfy this equation, then Ũµ(λ) is holomorphic (does not have a pole) at λ = λk .
Therefore, in order to preserve the structure of Uµ, the coefficients Aj of the Darboux matrix
(38) have to satisfy all equations resulting from (39) and (40) for any λk satisfying the equation
det D(λ) = 0.

To solve equation (40) we define dk and hk by

Dk = �kdk�
−1
k , Tk = �khk�

−1
k . (41)

Then

Dk,µ = �k,µ dk�
−1
k + �kdk,µ �−1

k − �kdk�
−1
k �k,µ �−1

k .

Therefore

Dk,µ = UkµDk + �kdk,µ �−1
k − DkUkµ,

and, taking into account (39) and (41), we rewrite (40) as follows:

�kdk,µ hk�
−1
k = 0. (42)

Finally, as a straightforward consequence of (39) and (42) we get the following constraints on
dk and hk:

dkhk = 0, dkhk,µ = 0. (43)

In [13] we confined ourselves to the case N = 1 and Tk = Dk (in other words, T (λ) = D(λ)),
i.e. dk = ϕkd0k (ϕk scalar functions, d0k constant elements satisfying d2

0k = 0), hk = dk . Now
we obtain the general solution of (43) in the case of 2 × 2 matrices.

Lemma 5. Let d and h are 2 × 2 matrices depending on x1, . . . , xm such that dh = 0,

dh,µ = 0 and d �= 0, h �= 0. Then there exist constants c1, c2 and scalar functions
q1, q2, p1, p2 (depending on x1, . . . , xm) such that

d =
(

q1c2 −q1c1

q2c2 −q2c1

)
=

(
q1

q2

)
(c2 −c1) ≡ qc⊥,

h =
(

c1p1 c1p2

c2p1 c2p2

)
=

(
c1

c2

)
(p1 p2) ≡ cpT .

(44)

Proof. The columns of h are orthogonal to the rows of d. If det(d) �= 0, then, obviously,
h = 0 in contrary to our assumptions. Therefore, det(d) = 0 which means that the rows of d
are linearly dependent. Similarly, the columns of h are linearly dependent as well. We denote
them by p1c and p2c (where c is a column vector). Thus h = cpT , where pT := (p1, p2).

dh = 0 means that the columns of h are orthogonal to the rows of d. Therefore, these
rows are of the form q1c⊥, q2c⊥, where c⊥ is a vector orthogonal to c, and, finally d = qc⊥.
Thus we obtained (44).

Taking into account the condition dh,µ = 0 we get

0 = qc⊥(c,µ pT + cpT ,µ ) = qc⊥c,µ pT ⇒ c⊥c,µ = 0.

This means that c2c1,µ = c1c2,µ, or c2/c1 is a constant. In other words, c1 = f c10, c2 = f c20

( f is a function, and c10, c20 are constants). To complete the proof we redefine p → fp,

q → f q and ck0 → ck . �
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Therefore,

D(λk) = �(λk)qkc
⊥
k �−1(λk), (45)

where ck are given constant column unit vectors, c⊥
k is a row vector orthogonal to ck and qk

are some vector-valued functions (column vectors). We keep the notation qkc
⊥
k ≡ dk , but now

in general d2
k �= 0.

We notice that in the case N = 1 the freedom concerning the choice of q1, q2 corresponds
to the arbitrariness of the normalization matrix. In particular, condition (5), which can be
rewritten as qk = ϕkck (k = 1, 2 and ϕ1, ϕ2 are scalar functions), imposes strong constraints
on N (see (18)).

Constraint (39) implies det D(λk) = 0. In the case of 2 × 2 matrices the equation
det D(λ) = 0 (where D is given by (38)) has 2N roots (at most): λ1, . . . λ2N .

Taking any N + 1 pairwise different roots (say λ1, . . . , λN+1) and using Lagrange’s
interpolation formula for polynomials, we get the generalization of formula (9):

D(λ) =
N+1∑
k=1




N+1∏
j=1
j �=k

(λ − λj )

(λk − λj )


 �(λk)qkc

⊥
k �−1(λk). (46)

We also have N − 1 matrix constraints which result from evaluating formula (46) at
λN+2, . . . , λ2N :

N+1∑
k=0

�(λk)qkc
⊥
k �−1(λk)

(λk − λ0) · · · (λk − λk−1)(λk − λk+1) · · · (λk − λN+1)
= 0, (47)

where λ0 = λN+2, . . . , λ2N .
We denote

Qk := �(λk)qk, C⊥
k := c⊥

k �−1(λk). (48)

The Darboux matrix is parameterized by 2N constants λk, 2N vector functions qk and
2N constant vectors ck subject to constraint (47).

The crucial point consists in solving system (47) in order to get parameterization of the
Darboux matrix by a set of independent quantities. We plan to express 2N − 2 functions from
among Q1, . . . ,Q2N by other data. For instance, we choose Q1,Q2 as independent functions
(they correspond to the normalization matrix N ).

We rewrite system (47) as

σν0QνC
⊥
ν +

N+1∑
k=1

σνkQkC
⊥
k = 0 (ν = N + 2, . . . , 2N) (49)

where

σνk = 1

(λk − λν)(λk − λ1) · · · (λk − λk−1)(λk − λk+1) · · · (λk − λN+1)

σν0 = 1

(λν − λ1) · · · (λν − λN)(λν − λN+1)
.

System (49) is linear with respect to Qk . We are going to express 2N − 2 vector functions
Q3, . . . ,Q2N by Q1,Q2 and by the other parameters: Ck, λk . Then, using (48), we could get
q3, . . . , q2N , etc. However, it is better to write (46) in terms of Qk:

D(λ) =
N+1∑
k=1




N+1∏
j=1
j �=k

(λ − λj )

(λk − λj )


 Qkc

⊥
k �−1(λk). (50)
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Taking the scalar product of (49) by C1 we get

Qν = −
N+1∑
k=2

σνk

〈
C⊥

k

∣∣C1
〉

σν0
〈
C⊥

ν

∣∣C1
〉 Qk (ν = N + 2, . . . , 2N) (51)

and the scalar product of the νth equation of (49) by Cµ yields

N+1∑
k=1

σνk

〈
C⊥

k

∣∣Cν

〉
Qk = 0 (ν = N + 2, . . . , 2N). (52)

This is a system of N − 1 linear equations with respect to Q1, . . . ,QN+1. Therefore, we
can (for instance) express Q3, . . . ,QN+1 in terms of Q1,Q2. Then, using (51), we have
QN+2, . . . ,Q2N expressed in the similar way.

Our method is closely related to the Neugebauer–Meinel approach [3]. Let D is given
by (38). We denote by F(D(λ)) the adjugate (or adjoint) matrix of D which is, obviously, a
polynom in λ. Thus,

D(λ)F (D(λ)) = w(λ)I, (53)

where w(λ) = det(D(λ)) is a scalar polynom and I is the identity matrix. Therefore, we can
put T (λ) = F(D(λ)) in formula (39) and identify λk with zeros of det D(λ).

In the Neugebauer approach the matrix coefficients Ak of the Darboux matrix (38) are
obtained by solving the following system:

D(λk)�(λk)ck = 0 (k = 1, . . . , nN), (54)

where λk and constant vectors ck are treated as given parameters. Thus, one has n2N scalar
equations for (N + 1)n2 scalar variables. One of the matrices Ak , say AN , is considered as
undetermined normalization matrix.

We point out that D(λk) given by formula (45) satisfy (54).

5. The discrete case

The discrete analogue of (1) is the following system of linear difference equation

Tµ� = Uµ� (µ = 1, . . . , m), (55)

where Tν denotes the shift in the νth variable, i.e. (Tν�)(x1, . . . , xν, . . . , xm) := �(x1, . . . ,

xν + 1, . . . , xm). The Darboux transformation is defined in the standard way:

�̃ = D�, Tµ�̃ = Ũµ�̃. (56)

Therefore (TµD)(Tµ�) = ŨµD�, and, finally

(TµD)Uµ = ŨµD. (57)

If D2(λ1) = 0, then multiplying (57) by D(λ) from the right, and evaluating the obtained
equation at λ = λ1 we see that the right-hand side vanishes and we get

(TµD1)Uµ(λ1)D1 = 0, (58)

where we denote D1 := D(λ1). In order to solve (58) we put

D1 = ϕ1�1d1�
−1
1 ,

where �1 := �(λ1). Then (58) takes the form

ϕ1Tµ(ϕ1)(Tµ�1)(Tµd1)d1�
−1
1 = 0.
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Therefore, if

(Tµd1)d1 = 0, (59)

then equation (58) is satisfied. Condition (59) can be rewritten (at least in the matrix case) as

im d1 ⊂ ker (Tµd1).

In other words, the sequence of linear operators

· · · → T −1
µ d1 → d1 → Tµd1 → T 2

µd1 → · · ·
is an exact sequence [17].

Similarly as in the smooth case the simplest solution of (59) is d1 = const such that
d2

1 = 0. Then the Darboux matrix has the same form (9) as in the continuum case.

6. Summary

In this paper, we developed the approach outlined in our earlier paper [13]. We extended its
results on the N-soliton case and presented some preliminary results on the discrete case. It
turned out that the discrete case is, as usual, very similar to the continuous one.

In the case N = 1 we considered explicitly the most important reductions. The results of
section 2 show that the form (15) of the Darboux matrix, very convenient as far as the unitary
reduction is concerned (compare [2]), is a necessary consequence of very weak assumptions
(8) and (26). We point out also lemma 2, which states that in the case of the unitary reduction
the equation det D(λ) = 0 has exactly two roots provided that D is linear in λ. This fact is not
obvious for matrices of higher dimensions n.

The approach of Neugebauer and Meinel [3] applied to 2 × 2 spectral problems produces
determinants of the order 2N . Our formula (50) contains (arbitrary) parameters λk, c

⊥
k and

matrices Q1, . . . ,QN+1. These matrices satisfy system (52) of linear algebraic equations. The
solution of (52) can be expressed in terms of determinants of the order N − 1. A similar, but
apparently different, simplification was obtained earlier for su(2)-AKNS spectral problems
[18].

The main motivation to develop the presented method is the construction of N-fold
Darboux transformation for Spin-valued spectral problems in terms of Clifford numbers rather
than matrices. It is already done in the case N = 1 (see [12, 13, 19]). To extend these results
to N > 1 one has to solve equations (43) in the case of Clifford numbers, i.e. to find an
appropriate generalization of lemma 5, and then to solve the resulting analogue of constraint
(47). Both problems remain open.
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